FIRE DANGER - (Name) District

Maximum, Average, 97 th Percentile

revised	ENERGY COMPONENT		
7/28/2005			
	Average	Average	Max
	Seasonal	Max	Value
	Values	Values	Observed
January	17.2	26.2	27
February	16.7	26.8	28
March	17.4	28.3	31
April	18.4	27.3	29
May	12.7	19.3	22
June	11.9	17.5	19
July	11	16.2	18
August	11.7	16.8	22
September	10.7	17	21
October	11.9	20.2	28
November	15.1	26.6	30
December	16.9	26.2	28

Fuel Model E Leaf Litter

Fire Danger Area:

NC (Topo Region / (Specify Topo Area)

NWS Forecasting Office – (3 letter ID)

(Lenoir Fire Danger RAWS)

Fire Danger Interpretation: this card is based on 5 Yrs. of data.

EXTREME -- Use extreme caution

(Caution) -- Watch for change

Moderate -- Lower potential, but always be aware

Maximum -- highest ERC by day for 2000 - 05

Average -- Shows mean daily value thru the year 97 th Percentile -- Only 3 % of the days from 2000 - 05 had an ERC above 27.

81 Percentile – represents an ERC level (**21 +**) where fire intensities can require air support and indirect attack .

Local Thresholds-- *Watch out*: Combinations of any of these 3 factors can greatly increase fire behavior.

Windspeed over 12 mi/h, RH less than 25%, Temperature over 75

Remember what Fire Danger tells you:

- ✓ ERC gives general seasonal trends calculated from precip, temp, and RH.
- Wind speed is not part of the ERC calculation.
- Watch local conditions and variations across the landscape--Fuel, Weather, Topography
- Listen to weather forecasts--especially WIND.

Energy Release Component is a number relating to the available energy released from forest fuels (BTU / ft²) at the head of a fire's flaming front. ERC is a composite of all live & dead fuel moistures. It is a very good reflection of drought conditions. It is a "build up" type index. Given a fire start in a fuel with a high ERC, fire containment can be expected to be difficult. ERC is very valuable in assessing the depth of a burn, consumption of the various fuel sizes, residual burning, and mop-up requirements.

Past Experience:

To be filled in with local information on the specific fires mentioned.

Ignition Component (IC) – the probability a firebrand will cause an "actionable" fire, & requires suppression. IC is more than just a probability of a fire start. It has to have the potential to spread. IC can be aid in assessing spotting potential. An **IC value of** \geq 30 +**is a critical threshold value**. Values at this level are critical during March, April & May as firebrands can initiate spot fires very easily.

Spread Component (**SC**) – the rate of spread (ROS) expressed in feet per minute. It is a guide to the fastest spread of a fire, its head fire. Wind speed, slope & fuels are key inputs. SC aids in assessing readiness plans, air tanker use, ground tactics, & prepositioning suppression resources. The SC value "usually exceeds" the fire's true ROS. In (hardwood litter **SC values exceeding** ? + are critical. At this value the fire is moving faster than fire lines can be built.

